

SME: ReRAM-based Sparse-Multiplication-Engine to Squeeze-Out Bit Sparsity of Neural Network

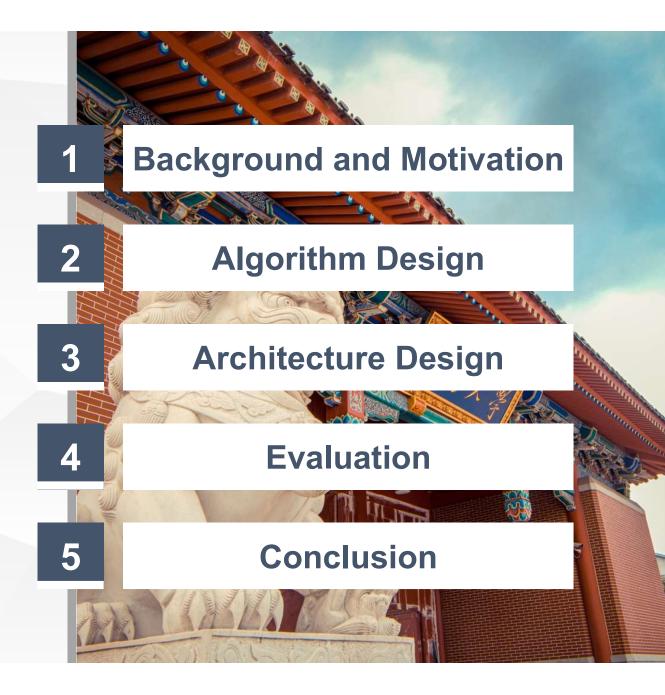
Fangxin Liu (Speaker)

Wenbo Zhao, Zhezhi He, Zongwu Wang, Yilong Zhao, Yang Tao, Xiaoyao Liang, Naifeng Jing and Li Jiang*

Shanghai Jiao Tong University

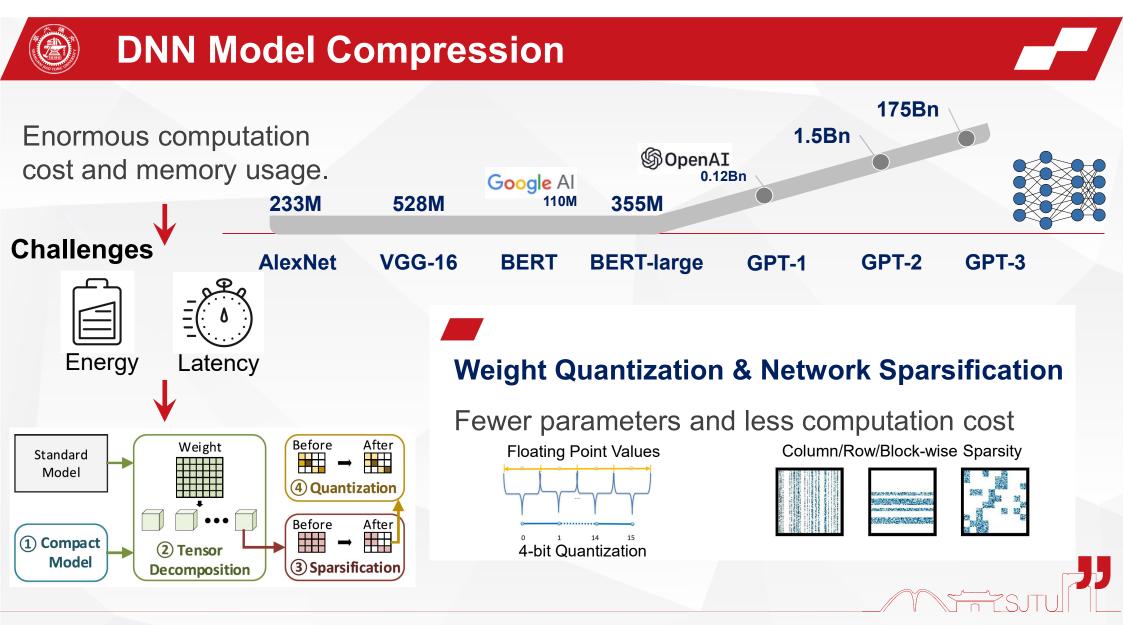
2022年2月28日

ICCD-39 Oct. 26, 2021



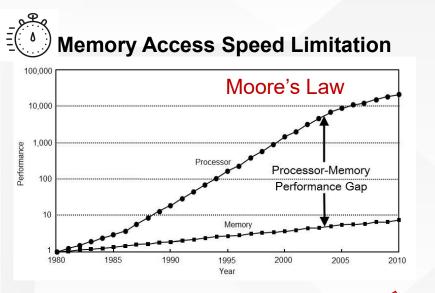
Background & Motivation

ST SJTU A



DNN Accelerator Limitation

Memory Wall



Memory Access Energy Consumption

- DDR4 DIMMs: 320 pJ/Byte
- In-package HBM DRAM: 64pJ/Byte
- In-processor SRAM:

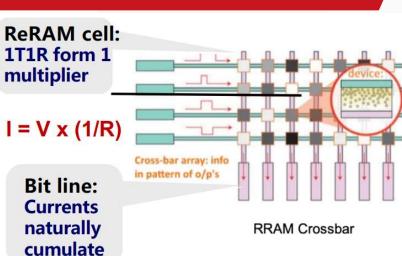
6pJ/bit for 8Mbit \rightarrow 47pJ/bit for 64Mbit

• In-processor Crossbar ReRAM: <0.5pJ/bit

Memory is the key to enable true intelligence

Background: ReRAM-Based DNN Accelerator

- Saves the weights on non-volatile resistive randomaccess memory (ReRAM).
- Operates Multiply-and-Accumulate (MAC) operations by gathering the analog currents in verticle bit-lines.
- Uses Digital-Analog Converters (DACs) and Analog-Digital Converters (ADCs) to communicate between digital peripheral circuit and analog ReRAM crossbar.



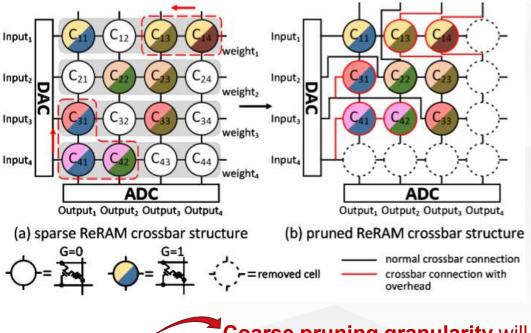
55

Weakness & Motivation

Structural-coupling problem:

manifests itself as the inability to freely skip the multiplication of zero operands because weight-bits in the same crossbar-row share the same input, and the current derived by multiplication in cells are accumulated in the same crossbar-column.

Structural pruning methods avoid this problem by pruning the weights in a granularity that the whole crossbar-column (or -row) can be removed at the cost of extra peripheral circuits



Coarse pruning granularity will inevitably modify weight values and thus requires finetuning to retrieve accuracy.

Algorithm Design

STESJTU A

SME

Quantization & Encoding

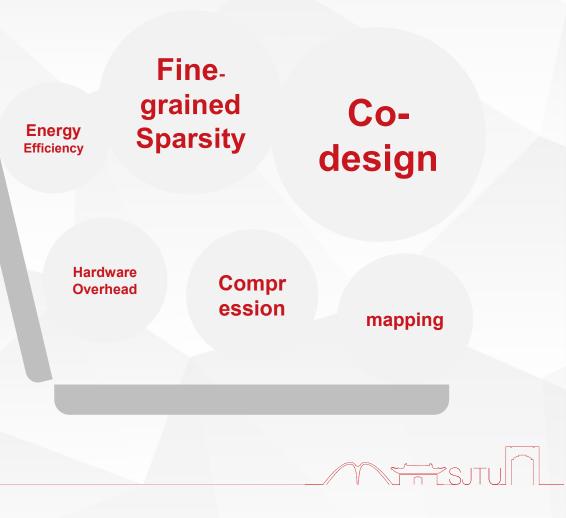
increase and accumulate the bit-level sparsity in a codeword

Bit-slicing

decouple the crossbar structure and aggregate a large amount of regular sparsity

Bit-wise Squeeze-out

The essence is row swapping among the crossbar group, but without introducing either overhead or large accuracy loss.



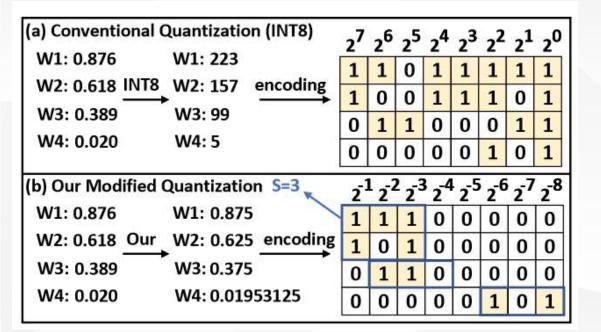
Challenges of Our Proposal

How to exploit the fine-grained sparsity with light overhead?

 The fundamental limit of exploiting the sparsity is because the data mapping and the VMM computation are tightly coupled with the crossbar structure

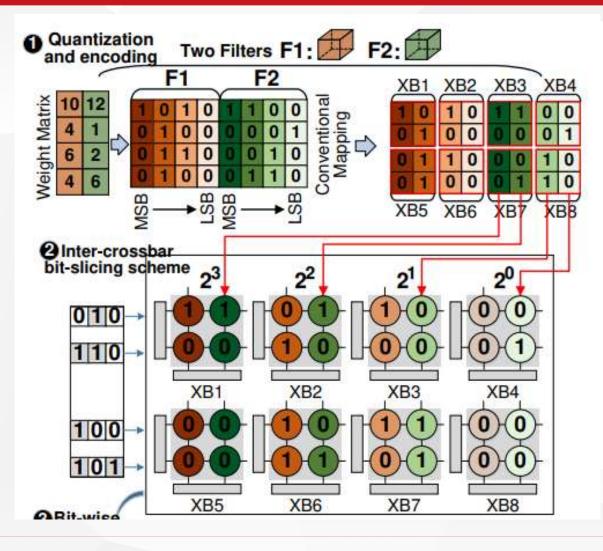
How to support efficient SME algorithm?

• We design the architecture to efficiently support our algorithm through well-designed crossbars with the peripheral circuit.



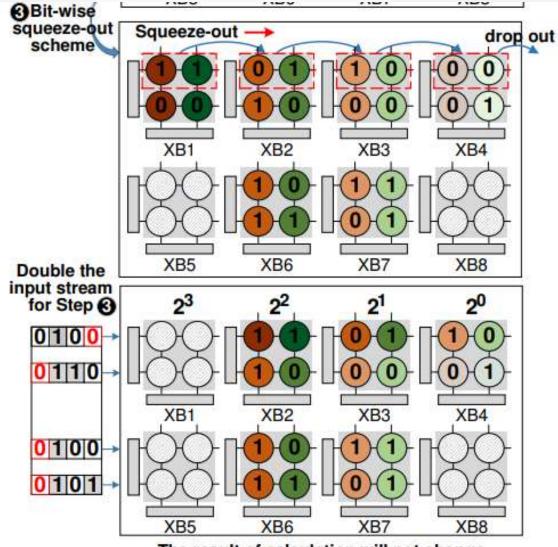
Quantization and Encoding Scheme

We quantize the weights into sum of power-of-twos, whose **exponent are among S consecutive integers. This results in a regular sparse pattern.**



Inter-crossbar Bit-slicing Scheme

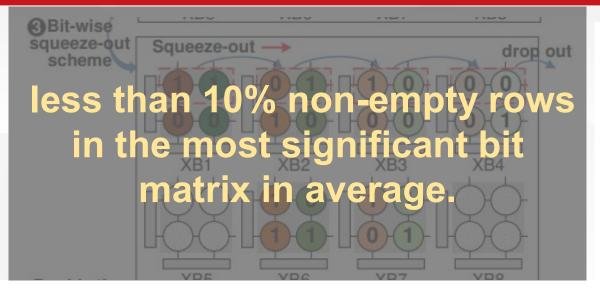
To decouple the crossbar structure, we propose the inter-crossbar bit-slicing scheme. The key idea of bitslicing is to map the same bit of quantized weights into the same bit crossbar.



The result of calculation will not change

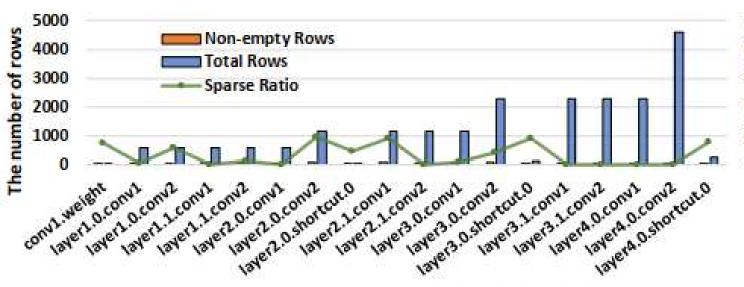
Bit-wise Squeeze-out Scheme

We squeeze the crossbar-rows containing non-zeros in preceding XBs to the subsequent XBs until these rows in tailing XBs are dropped out.



Bit-wise Squeeze-out Scheme

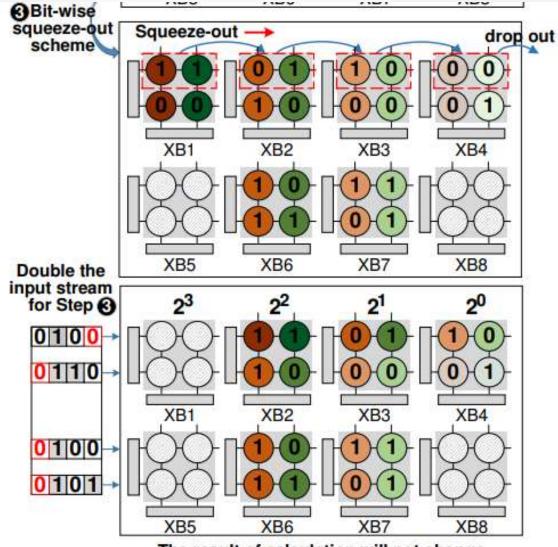
We squeeze the crossbar-rows containing non-zeros in preceding XBs to the



 50.0%
 3s until these

 40.0%
 XBs are dropped

 30.0%
 10.0%



The result of calculation will not change

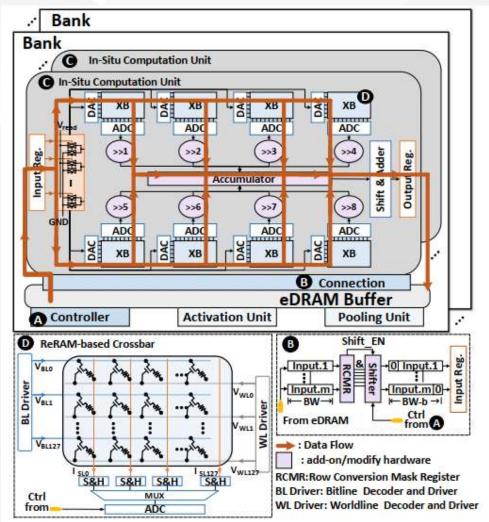
Bit-wise Squeeze-out Scheme

We squeeze the crossbar-rows containing non-zeros in preceding XBs to the subsequent XBs until these rows in tailing XBs are dropped out.

Architecture Design

ST ZSJTU

Overview of Architecture

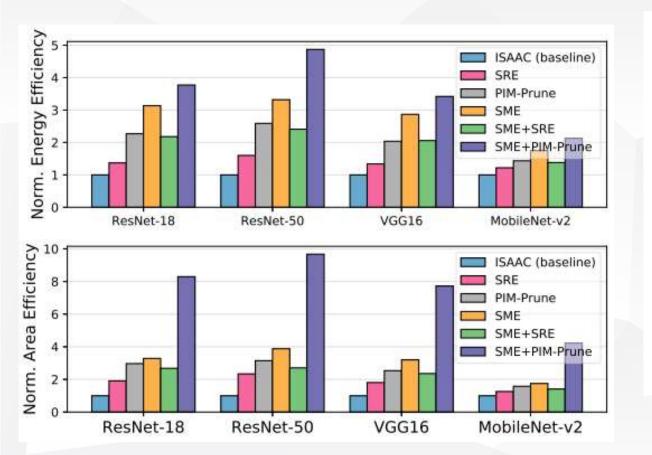


SME Architecture:

aiming at inference in edge devices. The SME add-on hardware implements, including simple modifications to the existing crossbar peripheral circuits, which is easier to manufacture than integrate complex logic into the chip.

Evaluation

Evaluation



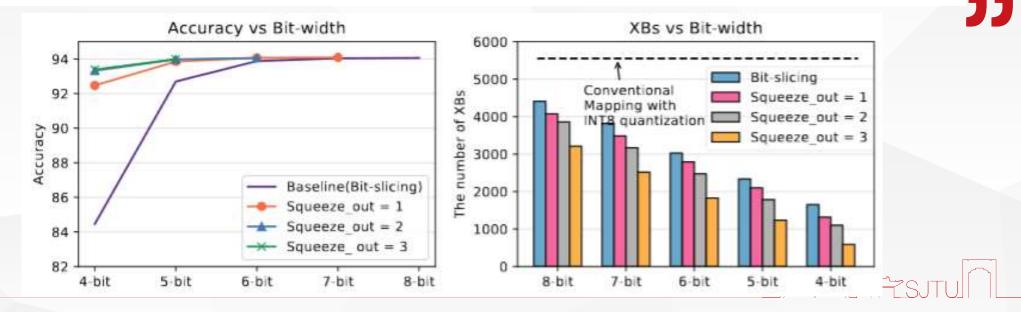
Energy- and Area-Efficiency:

- Up to 2.3 X energy
 efficiency
- Up to 6.1 X area

efficiency

Varied squeeze-out schemes with crossbar resource:

• We use the squeeze-out scheme to reduce the number of cells representing weights far better than directly reducing because the MSBs are more critical than the LSBs.



Sweet-spot for the size of consecutive region containing '1':

• We combine with the overall sparsity and the bit-level sparse distribution. We can find that \$S=3\$, SME achieves an optimal point for ResNet-18.

Conclusion

A novel SME algorithm

- decouples the hardware dependence of multiplication
- release the sparse cells in the crossbars for higher energy-/area-efficient inference

An efficient SME architecture

- Well-designed crossbars with the peripheral circuits
- Efficiently support the fine-grained sparsity generated by the our algorithm

Keep high accuracy while gaining large improvement in terms of energy and area

Thanks for Listening

WeChat

lfx920701