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DNN Model Compression

Enormous computation & 1.5Bn O
OpenAl ()
cost and memory usage. Google Al 01280
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Challenges AlexNet VGG-16 BERT BERT-large GPT-1 GPT2 GPT-3

<P
- "

Energy  Latency Weight Quantization & Network Sparsification
\L Fewer parameters and less computation cost
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5: Memory Access Speed Limitation
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Memory Wall

Moore’s Law

V'

Memory is the key to enable

true intelligence

In Memory computing

—l) Memory Access Energy Consumption

 DDR4 DIMMs: 320 pJ/Byte
 In-package HBM DRAM: 64pJ/Byte
 In-processor SRAM:

6pJ/bit for 8Mbit — 47pJ/bit for 64Mbit
 In-processor Crossbar ReRAM: <0.5pJ/bit
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Saves the weights on non-volatile resistive random-
access memory (ReRAM).

Operates Multiply-and-Accumulate (MAC) operations
by gathering the analog currents in verticle bit-lines.
Uses Digital-Analog Converters (DACs) and Analog-
Digital Converters (ADCs) to communicate between
digital peripheral circuit and analog ReRAM crossbar.

ReRAM cell:
1TIR form 1
multiplier

1=V x (1/R)

Bit line:
Currents
naturally
cumulate

RRAM Crossbar
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Input,

Structural-coupling problem:

Input; Input;
weight;,
—

Input;

vd
Jva

manifests itself as the inability to freely

Input,
weight;

skip the muiltiplication of zero operands

Input,

because weight-bits in the same T b

Output, Output, Output; Output, Output, Output; Output; Output,

Cross ba r-row S h are th e same | N p ut’ an d (a) sparse ReRAM crossbar structure (b) pruned ReRAM crossbar structure

normal crossbar connection
crossbar connection with

G=0 G=1 3.
the current derived by multiplication in O=H_ Q=H B verhesd
cells are accumulated in the same

Coarse pruning granularity will

crossbar-column inevitably modify weight values
' and thus requires finetuning to
Structural pruning methods avoid this problem by pruning the weights retrieve accuracy.

in a granularity that the whole crossbar-column (or -row) can be removed

at the cost of extra peripheral circuits ,, anN—otnt m
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Quantization & Encoding

increase and accumulate the
bit-level sparsity in a codeword

Bit-slicing

decouple the crossbar structure and
aggregate a large amount of regular
sparsity

Bit-wise Squeeze-out

The essence is row swapping among the
crossbar group, but without introducing
either overhead or large accuracy loss.

Fine.-
grained

Creray  Sparsity

Efficiency

Hardware
Overhead

Compr
ession

Co-

design

mapping
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Challenges of Our Proposal

How to exploit the fine-grained sparsity with light
overhead?

« The fundamental limit of exploiting the sparsity is
because the data mapping and the VMM computation
are tightly coupled with the crossbar structure

How to support efficient SME algorithm?

« We design the architecture to efficiently support our
algorithm through well-designed crossbars with the
peripheral circuit.
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(a) Conventional Quantization (INT8)

7.6.5.,4.3.,2.,1.0
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Quantization and Encoding

Scheme

We quantize the weights into
sum of power-of-twos, whose
exponent are among S
consecutive integers. This
results in a regular sparse
pattern.
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Q Juantizaton  Two Filters F1: [
F2

and encoding
F1

1I.rf».-'eight Matrix

Conventional

Mapping
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? Inter-cro r
it-slicing scheme

Inter-crossbar Bit-slicing
Scheme

To decouple the crossbar
structure, we propose the
Inter-crossbar bit-slicing
scheme. The key idea of bit-
slicing is to map the same bit
of quantized weights into the
same bit crossbar.
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€)Bit-wi
squeeze-qut
scheme

Double the

input stream
for Step €

O[A]0]0}~
O[O0}

0[0[0}+
oo}

| T 1
XB5 XB6 XB7 XEB8

) 4
Bit-wise Squeeze-out

Scheme

We squeeze the crossbar-rows
containing non-zeros in
preceding XBs to the
subsequent XBs until these
rows in tailing XBs are dropped
out.

The result of calculation will not change
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Overview of SME algorithm

Bit-wise Squeeze-out
less than 10% non-empty rows A

in the most significant bit
matrix in average.

Scheme

We squeeze the crossbar-rows
containing non-zeros in
preceding XBs to the

5000 s0.0% 3S until these

== Non-empty Rows
5 == Total Rows 40.0% XBs are dropped
30.0%

20.0%
10.0%
0.0%
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€)Bit-wi
squeeze-qut
scheme

Double the

input stream
for Step €
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Bit-wise Squeeze-out

Scheme

We squeeze the crossbar-rows
containing non-zeros in
preceding XBs to the
subsequent XBs until these
rows in tailing XBs are dropped
out.

The result of calculation will not change
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Architecture Design
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Bank
T /_G In-Situ Computation Unit ™
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E Connection |
eDRAM Buffer
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@ ReRAM-based Crossbar
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From eDRAM fmme

| mmi- : Data Flow
| |:| : add-on/modify hardware

RCMR: Row Conversion Mask Register
BL Driver: Bitline Decoder and Driver
WL Driver: Worldline Decoder and Driver

Yy 4
SME Architecture:

aiming at inference in edge

devices. The SME add-on

hardware implements, including

simple modifications to the

existing crossbar peripheral

circuits, which is easier to

manufacture than integrate

complex logic into the chip. ,,
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Evaluation
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- Energy- and Area-

=1 PIM-Prune
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Efficiency:
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= 10
c B ISAAC (baseline) *Upto 6.1 X area
% 5 B SRE
= =3 PIM-Prune efflClency
w G = SME
o SME+SRE
£ 4 B SME+PIM-PRiRe
il
'5 ' 33
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Evaluation

Varied squeeze-out schemes with crossbar resource:

* We use the squeeze-out scheme to reduce the number of cells
representing weights far better than directly reducing because the MSBs

are more critical than the LSBs. ,,
Accuracy vs Bit-width XBs vs Bit-width
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Evaluation

Sweet-spot for the size of consecutive region containing "1°:

* We combine with the overall sparsity and the bit-level sparse distribution.
We can find that $S=3%, SME achieves an optimal point for ResNet-18.
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Conclusion




Conclusion

A novel SME algorithm
« decouples the hardware dependence of multiplication

» release the sparse cells in the crossbars for higher energy-
/area-efficient inference

An efficient SME architecture
« Well-designed crossbars with the peripheral circuits

 Efficiently support the fine-grained sparsity generated by the
our algorithm

Keep high accuracy while gaining large improvement in

terms of energy and area \%g;
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